14th Annual Texas Conference on Health Disparities

Anti-Cancer Strategies Targeting Epigenetic Readers, Writers and Erasers

Roderick H. Dashwood, Ph.D., FRSB, Director Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine Houston, Texas

Author declares no conflicts associated with the work presented

Epigenetic 'readers, writers and erasers'

'Drugging chromatin'

Combined inhibition of BET family proteins and HDACs as a potential **epigenetics-based therapy** for pancreatic ductal adenocarcinoma. Mazur *et al., Nat Med* 2015.

'Drugging chromatin'

Bromodomain & extraterminal domain (BET) family includes BRD2/BRD3/BRD4/BRDT JQ1

> JQ1 blocks BRD4 from reading acetyl groups on histones and could halt progression of some cancers.

High-throughput screening in cell-based assays, >80,000 drugs/natural products \rightarrow sulforaphane

BRD4

HDAC3 turnover by dietary isothiocyanates

Immunoaffinity purification using acetyl-Lys antibodies→protein mass spectrometry.
CCAR2 was the earliest target for acetylation by SFN in human colon cancer cells.

•Cell Cycle and Apoptosis Regulator 2 (CCAR2) is a 'master regulator' of metabolism, aging, and cancer' EN Chini *et al.*, 2013.

CCAR2 acetylation precedes histone acetylation

Identifying the CCAR2 acetylation sites

CCAR2 null cells are rescued by WT CCAR2

CCAR2 is a *coactivator* of Wnt/β-catenin signaling

Colorectal cancer (CRC)

Wnt/ β -catenin signaling is diminished by SFN

2

RESEARCH

CXXC4 LRG1

CCAR2/β-catenin interactions are reduced by SFN

MEDICINE TEXAS A&M UNIVERSITY

CCAR2/ β -catenin interactions are reduced in humans

Crucifer Low Crucifer High

Crucifer Low Crucifer High

```
β-catenin/CCAR2, PLA
```

MMP7

Cyclin D1

'Readers' of acetylated proteins

'Functions of bromodomain-containing proteins and their roles in homeostasis and cancer' – Fujisawa & Filippa*kop*oulos 2017

Identifying 'readers' of acetylated CCAR2

SFN+JQ1: BRD9-regulated targets are implicated

C

Pathway Enrichment (SFN+JQ1), n=324 genes

С	SFN+JQ1-specific genes		
•	Gene	Fold-change	
	Misp3	3.95	-
	Krt39	3.19	
	Anxa13	2.76	Upregulated
	Apobec2	2.63	1 0
	Sorcs1	2.52	
	lgfbp1	-2.54	
	Lix1	-2.54	
	Mettl7b	-2.55	
	Tmem14a	-2.64	
	Csf3	-2.71	
	Chga	-2.85	
	Klk8	-3.08	Downregulated
	Tnnl2	-3.38	
	Shh	-3.69	
	Reg3b	-3.90	
	Tubal3	-4.14	
	Prl2a1	-5.56	
	Ercc2	-6.25	

Working model for SFN+JQ1

Summary

Prior to SFN-mediated histone acetylation, CCAR2 was acetylated at K54/K97/K916 sites, which interfered with protein-protein interactions involving HDAC3 and β -catenin.

Altered β-catenin/CCAR2 interactions and subcellular localization interfered with the Wnt co-activator role of CCAR2.

Loss of CCAR2/ β -catenin interactions and downregulation of β -catenin/Tcf targets were implicated in a screening colonoscopy trial, in human subjects reporting high vs. low intake of cruciferous vegetables – a surrogate for SFN intake and deacetylase inhibition.

'Readers' of acetyl CCAR2 were identified using protein domain arrays, and included BET members BRD2/BRD3 (known targets of JQ1), and BRD9 (which is not inhibited by JQ1).

JQ1+SFN had enhanced efficacy in human colon cancer cells, mouse xenografts, and the Pirc model of FAP, with evidence for downregulation of Wnt/ β -catenin signaling.

A working model for JQ1+SFN proposes competition between acetyl 'readers', and a shift towards increased BRD9-mediated chromatin interactions and target genes.

Acknowledgements

TEXAS A&M

RESEARCH

Emily Ho Christiane Löhr Melinda Myzak David E. Williams William H. Bisson P. Andrew Karplus Barbara Delage Laura M. Beaver

David A. Lieberman, M.D.

Furkan Ertem Ahmet Ulusan Mohaiza Dashwood Gavin Johnson Ying-Shiuan Chen Lindsey Chew Ahsan Khan

Praveen Rajendran Adaobi Okonkwo Nhung Nguyen Mutian Zhang Shan Wang lili

Degiang Sun Wengian Zhang Jia Li

Making Cancer History®

Nancy Otto Mark Bedford Asif Rashid E. Vilar-Sanchez Gottumukkala Raju

Questions?

Bavlor College of Medicine

Eastwood Leung

NIH grants P01 CA090890, R01 CA122959: Chancellor's Research Initiative; John S. Dunn Foundation; Texas A&M AgriLife Research

