Health disparities in addiction: Lessons from imaging and genetics, with implications for treatment

Ariel Ketcherside, PhD
Postdoctoral Researcher
Department of Psychiatry
Perelman School of Medicine
The University of Pennsylvania

I have no conflicts of interest.

Overview

The tools we use

- Genetic variability
- Protein expression
- Neuroimaging
- Behavior

Disparities in addiction

- Sex differences
- Differences in brain and behavior
- Implications for recovery

Addiction

- Disease of the brain
 - Motivation
 - Reward
 - Memory

Physical and chemical

- Chronic
- Continued use despite negative consequences
- Measured on a spectrum;
 more symptoms = increased severity

American Society of Addiction Medicine

Addiction Symptoms and Severity

- Failure to fulfill life obligations
- Giving up other activities
- Continued use despite negative consequences
 - Health
 - social

- Increased amount used, and time spent using
- Use in hazardous situations
- Tolerance
- Withdrawal
- Inability to control intake

Craving

More symptoms = greater severity

Cue-elicited Craving

- With repeated use, stimuli predict delivery of reward
- Over time, the brain begins to respond to the cue itself
- This triggers craving

Cue-elicited Craving

Neuroimaging

Structure

Function

- Neural activity as a function of blood flow
- Experimental paradigms specifically designed to responses to different stimuli

Neuroimaging: Cue paradigms

Wetherill et al. 2015

Genetic Variability

Ducci and Goldman, 2012

Protein expression and Cell function

Endocannabinoid System

Neuromodulatory

- appetite
- pain
- mood
- higher order cognitive functions
- reward and motivation

CB1

- in the brain and the rest of the body
- primary cannabinoid receptor in the brain

CB1 + Cannabis

- THC (trans-Δ⁰-tetrahydrocannabinol)
 - Binds to CB1
 - Psychoactive
 - Activates reward circuitry and is therefore addicting
 - genetic variability in CB1 affects THC binding

Agrawal et al., 2009; Lopez-Moreno et al., 2012

Variability in the CB1 gene: rs2023239

- Causes alternative splicing of CB1 gene
 - → changes the structure of CB1
 - → changes the function of CB1 (ligand binding)
- Associated with
 - increased cannabis use disorder
 - increased craving for cannabis

Cannabis use and brain volume

Schacht, Hutchision & Filbey, 2012

Rs2023239 and brain volume

Schacht, Hutchision & Filbey, 2012

Rs2023239 genotype is associated with

brain's response to cues

Risk allele carriers have greater activation in the orbitofrontal cortex than non carriers.

Filbey et al., Neuropsychopharmacology, 2010

A biomarker for cannabis use disorder

 What if rs2023239 has a measurable effect in a part of the body a little more accessible?

A biomarker for cannabis use disorder

- Acquired blood samples from cannabis users (N=41) and healthy controls (N=26)
- Measured CB1 density in lymphocytes

Rs2023239 and CB1 receptor density

 No difference between users and controls, until we look at the risk variant:

A biomarker for cannabis use disorder

- Cannabis users carrying the risk variant had more CB1 than nonusers and non-risk variant carriers.
- But the majority of the literature says CB1 in the brain goes down with heavy cannabis use
- Different post-translational regulatory mechanisms for different cells
 - We're still figuring it out

Part II: Health Disparities in sex differences

Sex differences in research

- Women are historically under-represented in research
 - To protect women of childbearing potential
 - Hormonal variability considered a "complication"
- The NIH did not have an official inclusion policy until 1993
 - Overseen by the office of research on women's health
- We're still catching up, especially when it comes to substance use disorders
 - How do men and women respond differently to drugs?
 - Are they differently vulnerable to relapse?
 - Do some medications/treatments work better for one sex compared to the other?

Sex differences in the health consequences of smoking

Compared to male smokers, female smokers:

- have a 25% greater risk of coronary heart disease
- are more likely to develop lung cancer
- have greater Chronic Obstructive Pulmonary Disease
- have additional reproductive health concerns

Women have greater difficulty in quitting

Why is it harder for women to quit?

• What is the mechanism?

Sex differences in response to smoking

cues

Women respond best to varenicline

■ Varenicline vs. Placebo
■ TN vs. Placebo
■ Bupropion vs. Placebo

- Varenicline blocks the rewarding effects of cigarettes
- This decouples smoking from reward over time, devaluing the cues.

Women respond to varenicline better than

men

McKee et al. 2015

Men respond to the pharmacological

reward of nicotine

- Men report greater reward from nicotine compared to women
- Women are less sensitive to nicotine dose

Men

Women

Horizontal brackets indicate a dose by sex interaction * p<.05; † p<.10]

Men

Women

Perkins et al. 2018

Men

Women

Conclusions

- Neuroimaging + genetics allow us to understand the brain and behavior in non-invasive ways
- Combined with biology, we are getting better at characterizing addiction
- The biggest genetic difference is sex.
- We need to account for sex when treating substance use disorders

Conclusions: Sex differences in addiction

- Men and women experience craving differently
- Treatment implications:
 - Women are more cue-vulnerable to men and therefore respond better to varenicline
 - Men are susceptible to pharmacological withdrawal and thus respond better to nicotine replacement therapy

Acknowledgements

The University of Texas at Dallas

- Dr. Francesca Filbey
- Dr. Shikha Prashad
- Dr. Chrysta McIntyre

The University of Pennsylvania

- Dr. Teresa Franklin
- Dr. Reagan Wetherill
- Melanie Maron
- Nathaniel Spilka
- Heather Keyser

Additional Collaborators

- Dr. Samuel J. Dewitt
- Milind Rao
- Brent Ladd

Funding Provided by

- R01DA030344
- R01DA040670
- K01DA021632
- National Science Foundation
- Purdue University Center for Science of Information

All full references, as well as some full manuscripts presented today are available at www.arielketcherside.com.